Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Alzheimers Dis ; 94(4): 1563-1576, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37458041

RESUMO

BACKGROUND: The human chromosome 19q13.32 is a gene rich region and has been associated with multiple phenotypes, including late onset Alzheimer's disease (LOAD) and other age-related conditions. OBJECTIVE: Here we developed the first humanized mouse model that contains the entire TOMM40 and APOE genes with all intronic and intergenic sequences including the upstream and downstream regions. Thus, the mouse model carries the human TOMM40 and APOE genes and their intact regulatory sequences. METHODS: We generated the APOE-TOMM40 humanized mouse model in which the entire mouse region was replaced with the human (h)APOE-TOMM40 loci including their upstream and downstream flanking regulatory sequences using recombineering technologies. We then measured the expression of the human TOMM40 and APOE genes in the mice brain, liver, and spleen tissues using TaqMan based mRNA expression assays. RESULTS: We investigated the effects of the '523' polyT genotype (S/S or VL/VL), sex, and age on the human TOMM40- and APOE-mRNAs expression levels using our new humanized mouse model. The analysis revealed tissue specific and shared effects of the '523' polyT genotype, sex, and age on the regulation of the human TOMM40 and APOE genes. Noteworthy, the regulatory effect of the '523' polyT genotype was observed for all studied organs. CONCLUSION: The model offers new opportunities for basic science, translational, and preclinical drug discovery studies focused on the APOE genomic region in relation to LOAD and other conditions in adulthood.


Assuntos
Doença de Alzheimer , Apolipoproteínas E , Humanos , Animais , Camundongos , Apolipoproteínas E/genética , Genótipo , Fenótipo , Íntrons , Expressão Gênica , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Predisposição Genética para Doença , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial
2.
Front Physiol ; 14: 1294560, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38239884

RESUMO

Histomonas meleagridis, a protozoan parasite, induces blackhead disease (histomoniasis) in poultry. During hatching, chicks from lines divergently selected for high (HAS) and low (LAS) antibody responses to sheep red blood cells were divided into two groups, each of HAS and LAS, and placed in pens with wood shavings as litter. Feed and water were allowed ad libitum. Half of the chicks from each line had Limosilactobacillus reuteri (L. reuteri) inoculated to their drinking water. On day 18, all chicks were given a transcloacal inoculation of 100,000 H. meleagridis cells. Then, 10 days later, they were euthanized, followed by collection of tissues from the brain, cecal tonsil, ceca, liver, thymus, and spleen for qPCR analyses of cytokines involved in immunological development. Changes in cytokine expressions were most numerous in the cecal tonsil, ceca, and liver. In the absence of a functional medication for control of histomoniasis, L. reuteri and/or its secretory product, reuterin, might serve, in some genetic populations, as a means to reduce the impact of histomoniasis in chickens. The data demonstrate that L. reuteri treatment had tissue specificity between the two genetic lines, in which the effects were targeted primarily toward the cecal tonsil, ceca, and liver, which are the primary tissue targets of the parasite (H. meleagridis), as well as the thymus and spleen. However, interactions among main effects reflect that responses to inflammatory markers observed in tissues for one genetic line may not be observed in another.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...